miR-377 induces senescence in human skin fibroblasts by targeting DNA methyltransferase 1
نویسندگان
چکیده
Skin aging is a complicated physiological process and epigenetic feature, including microRNA-mediated regulation and DNA methylation, have been shown to contribute to this process. DNA methylation is regulated by DNA methyltransferase, of which DNA methyltransferase 1 (DNMT1) is the most abundantly known. But evidence supporting its role in skin aging remains scarce, and no report regards its specifical upstream-regulating molecules in the process of skin aging so far. Here, we found that DNMT1 expression was markedly higher in young human skin fibroblasts (HSFs) than that in passage-aged HSFs, and DNMT1 knockdown significantly induced the senescence phenotype in young HSFs. We predicted the upstream miRNAs which could regulate DNMT1 with miRNA databases and found miR-377 had high homology with a sequence in the 3'-UTR of human DNMT1 mRNA. We confirmed that miR-377 was a potential regulator of DNMT1 by luciferase reporter assays. miR-377 expression in passage-aged HSFs was markedly higher than that in the young HSFs. miR-377 overexpression promoted senescence in young HSFs, and inhibition of miR-377 reduced senescence in passage-aged HSFs. Moreover, these functions were mediated by targeting DNMT1. Microfluidic PCR and next-generation bisulfite sequencing of 24 senescent-associated genes' promoters revealed alterations of the promoter methylation levels of FoxD3, p53, and UTF1 in HSFs treated with miR-377 mimics or inhibitors. We also verified that the miR-377-mediated changes in p53 expression could be reversed by regulation of DNMT1 in HSFs. Similarly, there was a negative correlation between miR-377 and DNMT1 expression in young and photoaged HSFs, HSFs, or skin tissues from UV-unexposed areas of different aged donors. Our results highlight a novel role for miR-377-DNMT1-p53 axis in HSF senescence. These findings shed new light on the mechanisms of skin aging and identify future opportunities for its therapeutic prevention.
منابع مشابه
Microrna-217 modulates human skin fibroblast senescence by directly targeting DNA methyltransferase 1
DNA methyltransferase 1 (DNMT1) is a major epigenetic regulator associated with many biological processes. However, the roles and mechanisms of DNMT1 in skin aging are incompletely understood. Here we explored the role of DNMT1 in human skin fibroblasts senescence and its related regulatory mechanisms. DNMT1 expression decreased in passage-aged fibroblasts and DNMT1 silencing in young fibroblas...
متن کاملUltraviolet A irradiation induces senescence in human dermal fibroblasts by down-regulating DNMT1 via ZEB1
In this study, we report the role of DNA methyltransferase 1 (DNMT1) in ultraviolet A (UVA)-induced senescence in human dermal fibroblasts (HDFs). We show that DNMT1 expression was significantly reduced during UVA-induced senescence, and this senescence could be alleviated or aggravated by the up- or down-regulation of DNMT1, respectively. Expression of the transcription factor zinc finger E-bo...
متن کاملmiR-141, a new player, joins the senescence orchestra
microRNAs (miRNAs) are short non-coding, single-stranded RNA molecules of:22 nucleotides that either inhibit translation or enhance degradation of mRNA of a target gene. To date, more than 2500 human miRNAs (miRBase v20), regulating a remarkable array of cellular processes and human pathologies, have been identified. in line with recent evidence that certain miRNAs function as tumor suppressors...
متن کاملModulation of a Specific Pattern of microRNAs, Including miR-29a, miR-30a and miR-34a, in Cultured Human Skin Fibroblasts, in Response to the Application of a Biofunctional Ingredient that Protects against Cellular Senescence in Vitro
Skin aging is a process of structural and compositional remodeling that can be manifested by wrinkling and sagging. Remarkably, the dermis plays a dominant role in the aging process. Recent studies suggest that microRNAs are implicated in the regulation of gene expression during aging. However, studies about age-related microRNAs and how they modulate skin aging remain limited. In the present w...
متن کاملThe microRNA miR-17-3p inhibits mouse cardiac fibroblast senescence by targeting Par4.
The microRNA miR-17-92 cluster plays a fundamental role in heart development. The aim of this study was to investigate the effect of a member of this cluster, miR-17, on cardiac senescence. We examined the roles of miR-17 in senescence and demonstrated that miR-17-3p attenuates cardiac aging in the myocardium by targeting Par4 (also known as PAWR). This upregulates the downstream proteins CEBPB...
متن کامل